Australian Advanced Computing Facility for Climate and Earth Systems Research

Joseph Antony
National Computational Infrastructure
(NCI) program
nf.nci.org.au

First Stage: Building a Peak Compute Facility to support Climate and Earth System Research

- NCI National Computational Infrastructure. Supported by NCRIS initiative from Australian Government (DIISR).
- ANU with partners CSIRO, Bureau of Met, Geoscience Australia, Research Intensive Universities (Go8).
- Tier-1 computing capability Peak (ANU) plus national access to small number of specialised systems
- New initiative in data-intensive application support.

Building the case for Petascale computing for

Climate and Earth Systems Research

- Build a comprehensive facility: HPC, data management and analysis, viz, web, ...
- Interoperate between research & operations.
- Need to develop cohort of specialists that support the collaborative.
- Decision: Proceed with Joint procurement between Bureau of Met as operational system & National Facility as research system; increase data sharing and access— nationally and internationally.

Other Tier1 groups also to use the system.

NCI National Facility Supercomputer Stage 1 Sept 09, Stage 2 Dec 09 Bureau NWP operation system: Nov-Dec 09

(Image cf Julich, Germany)

NF System details: Nodes

- 1496 nodes each with:
 - two 2.93GHz Intel Nehalem processors (quad-core)
 - 24GB of fast (DDR3-1333) memory
 - QDR (40Gb/s) Infiniband interconnect
 - 24GB flash DIMM for swap/OS
- Almost 12,000 compute cores
- 35 Tbytes of mem.

Bureau Op system

- 576 nodes (4608 cores)
- 5x performance of SX-6

936 TB raw space

National Computational Infrastructure

NCI National Facility

Interconnect & Storage

- Full QDR (40Gb/s) fat-tree Infiniband network
- Four 648-port "M9"
 Infiniband switches
- 2.5GB/s bandwidth and < 2us latency
- Lustre: Approx 1PB in raw capacity, 1248 Enterprise SATA disks
- Approx 20GB/s bandwidth

Data Intensive Environment

Capacity

~0.6PB of existing data under Sun SAM-QFS*

~3PB capacity (HSM)

~0.25Pbytes of online filesystems

30Tbytes of relational databases

Centos (under ESX)

Next increase disk ~2 PByte disk

 Specialised data services and hosting – data storage and transfer.

Networks

4 x 10GigE between Vayu and the DC 10GigE AARNet link to SX-Transport.

Multiple

10GigE

Building a Facility for Climate and Earth System Research: the next Stage

NCI National Facility

National Framework for Climate Change Science (NFCCS) by the Department of Climate Change (DCC).

- to understand and predict changes in greenhouse gas levels, so that global targets to reduce emissions achieve what they are designed to do
- to provide better information about the likely future climate at a regional level to facilitate management of Australia's increasing demand for water
- to provide quality information about likely changes in sea level, ocean temperature, storm surge and extreme weather and climate events to facilitate management of the marine, coastal and inland environments
- to provide the information needed for national adaptation initiatives to minimise disruption/costs associated with changes in extreme weather and climate
- to improve our ability to predict atmospheric behaviour across short, medium long time scale

NCI National Facility

To accomplish this:

- Make a comprehensive service and long-range plan for climate research and earth systems.
- \$50M (2010 budget) to NCI to provide for "new supercomputing infrastructure to analyse and model information on climate change, earth systems and national water management".

NCI National Facility

Provide a comprehensive service:

- an increased "petascale" high performance computing facility.
- large scale data infrastructure and management services that provides a national data facility for research undertaken and a repository for datasets of international significance, serving also as international datanode for CMIP5 (AR5) data (ESG supernode and gateway)
- Build on data node for major climate collections and gateway for comprehensive climate service.
- facilities to provide data analysis, data synthesis, data mining and advanced visualisation.
- applications support and a software engineering / development team to deliver on research outcomes.

Climate Infrastructure network

Data transfer between NCI, and CSIRO/Bureau CAWCR – AR5/CMIP5 run at NCI-NF (ACCESS,Mk3.6,...)
Data Storage at NCI (inc Data Core Note), Bureau and CSIRO.
Researchers (Modellers, Data Analysis, ...) connect to the NCI-NF (UNSW, Melbourne, Monash, UTAS, ANU, CSIRO, Bureau...)

Datasets (indicative)

Main datasets

- AR4/AR5, CMIP3/CMIP5 Australian model runs (ACCESS, and Mark 3.6)
- Full CMIP3 mirror
- NCEP R1 and R2
- ECMWF ERA40 + interim reanalysis
- CSIRO Mark2 and Mark3 models (3.0, 3.5, 3.6 more fields than in CMIP3)

Additional

- CCAM model historical experiments (15+ years of data)
- RAMS experiments
- High quality Bureau rainfall and temperature (from Station data, but also produced optimally interpolated set for the country).
- possibly transfer realtime observations received and archived by the Bureau, etc.

NCI National Facility

Datasets (cont)

- WOA05
- HADISST
- Range of small, high quality but useful datasets.
- key model intercomparison runs
- Japan Meteorological Administration (JMA)
- ocean reanalyses forcing data used in key model intercomparison experiments
- observations from key special observing campaigns
- satellite data such as Cloudsat, TRIMM
- Australian Water Availability Project (AWAP)
- •

Deployment of ESG Data Node and National Gateway

Joseph Antony and Ahmed El Zein

ESG Installation and Modification

- Created a set of deployment notes based on a JeOS VM to improve maintainability.
- Depend on upstream O/S or service providers for Java middleware, MySQL, PgSQL updates
- As a result we now have distinct components for our ESG data node
 - Tomcat, PgSQL components
 - ESG specific components (Python modules, THREDDS)
- Next will get 'yum install esg-datanode' working

- Improvements with this approach
 - JeOS: drill down entire OS install
 - means more streamlined installation
 - Defined as a Open Virtualization Format (OVF)
 VM deployment file
 - Can be used under Xen or Virtual box

ESG Data Node Stress Test

- Our ESG data node now publishes to the PCMDI gateway
- CSIRO's CMIP3 data products being re-published on the ESG node at the NF
- Acts as a stress test to identify
 - JVM overheads
 - Impact on the I/O subsystems
 - Running OProfile over the entire VM
- Can compare results to other international fast data transfers

NCI National Facility

Supported by:

➤ Australian National University	➤ Research Intensive Universities (Go8)
➤CSIRO, inc CAWCR	➤ Aust. Bureau of Met ➤ Geoscience Australia

Contacts:

Ben.Evans@nf.nci.org.au

Joseph.Antony@nf.nci.org.au

http://nf.nci.org.au